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Abstract

This paper presents a ®nite element numerical solution of free convection in a cavity with side walls maintained at
constant but di�erent temperatures. The predictions from the model and the method of solution were validated by
comparison with the `bench mark'solution and Vahl Davis' results and good agreement was found. The present

model was used to obtain additional results over a wide range of Rayleigh number (103±106) and L/H ratios varying
from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity pro®les as well as the mean
Nusselt number were presented and discussed. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The continuous increase of the processing speed and
the storage capacity of the new computers, also led to

the increase of the possible solutions of complex pro-
blems which involve ¯ow with heat and mass convec-
tion as well as boundary deformation. Traditionally a
great deal of complicated combined thermal ¯uid ¯ow

problems are solved by the control volume method
based upon the ®nite di�erences approximation, even
when there is no urge for fast processing machine. The

use of the co-localized or equal order methods changed
this situation and, more frequent, methods based upon

®nite element methods are preferred by research
workers in the heat and ¯uid ¯ow area.
One of the pioneer studies in this area is the work

due to Marshall, Heinrich and Zienkiewicz [1] in which
a formulation based upon a `penalty function' was
used to obtain a solution for a convective problem in a

square cavity and presented results for di�erent Ray-
leigh numbers (104, 105, 106 and 107).
Di�erent possible solutions suitable for handling

¯uid movement by using co-localized grids were com-

piled and presented by Schneider et al. [2]. They exam-
ined and incorporated into their solution of several
test problems using the penalty function method, the

false compressibility method and the velocity correc-
tion procedure. They concluded that the method of
correcting the velocity rendered the best results.

Although there is a possibility of direct solution of the
velocity, temperature and pressure ®elds for this kind
of problems, it's rarely used. The most common

methods can be found in Gresho [3] and Gresho and
Chan [4].
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Studies realized by Prakash [5] and PerõÂ c et al.

[6], show that methods of equal order are more
accurate. Among the most know methods with co-

localized grids is the method proposed by Rice and

Schnipke [7], which utilizes a transposition of the
traditional control volume methods to the ®nite el-

ement technique. Another well known method is the
time explicit method proposed by Kovacs and

Kawahara [8], which was adapted for use with sec-

ond order Runge Kutta by Ren and Utnes [9]. The
third solution method equally important is the

method proposed by Despotis and Tsangaris [10].

These solution methods can be adapted to use with
upwind approximation technique, such as proposed

by Brooks and Hughes [11] or the method due to

Rice and Shnipke [12]. Following similar trends of
the solution methods, there are a variety of alterna-

tive techniques based upon the control volume

applied to ®nite elements method (CVFEM) origi-
nated from the studies due to Baliga and Patankar

[13,14]. This method was originally proposed to use

with di�erent interpolation orders but later was
adapted to incorporate co-localized grids, as done

by Prakash and Patankar [15]. A complete analysis

of the alternative solutions by this method can be
found in Saabas and Baliga [16], while the study

presented by Idelsohn and OnÄ ate [17] addresses the

question of the choice of the more suitable method
to solve a speci®c proposed problem.

Vahl Davis and Jones [18], presented the results

of innumerous methods of solution applied to a test
problem of free convection in a cavity for di�erent

Rayleigh number. Later Vahl Davis [19] presented a

solution for the proposed free convection problem.
He obtained results for di�erent grids extrapolated

in such a way to obtain a solution with minimum

possible error and, hence this solution is considered
as a reference solution for this speci®c problem.

This paper presents a solution of free convection

problem based on extending the ®nite element model
proposed by Rice and Schnipke [7] (no free convec-

tion was admitted). The extension of their model was

realized by including the necessary terms for the
treatment of free convection ¯ows and their correct

manipulation. As an advantage of the present method
is the use of primitive variables which facilitates the

application of the boundary conditions and also the

utilization of the false transient scheme which permits
better convergence levels. The results are analyzed

and compared with Vahl Davis' model [19] bench

mark solution to validate the present method of sol-
ution.

Nomenclature

c speci®c heat (J/kg K)
[C ] matrix of the convective terms
k thermal conductivity (W/m K)

Kp term associated with pressure in the
momentum equation

[K ] conductance matrix

L characteristic length of the problem
[M ] global mass matrix
Ni interpolation function

Nu Nusselt number (Nu=(hL/k ))
p pressure (Pa)
P dimensionless pressure (P = ( p/r )(L/a )2)
[Pz '] matrix of the pressure terms in z direction

Pr Prandtl number (Pr=(n/a ))
Ra Rayleigh number (Ra=( gbDTL 3/n 2)Pr)
s p,z the source term associate to the pressure

in z direction
S source term
t time (s)

T temperature (8C)
u velocity in the x direction (m/s)
U dimensionless velocity in the x direction

(U=(uL/a ))
v velocity in the y direction (m/s)

V dimensionless velocity in the y direction
(V=(vL/a ))

W arbitrary weighting function

x x-coordinate (m)
X dimensionless x-coordinate (X=(x/L ))

Greek symbols

a thermal di�usivity (m2/s)
b coe�cient of thermal expansion (Kÿ1)
G surface of the problem
E residual value

r density (kg/m3)
t dimensionless time (t=Fo=at/L 2)
y dimensionless temperature (y=(TÿTf )/

(ThÿTf ))
O problem domain
Oe elementary domain

m dynamic viscosity (kg/m s)
n kinematic viscosity (m2/s)
c streamline function

Subscripts

max maximum value
med mean value
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2. Formulation of the problem

With the reference to Fig. 1, one can write the two-

dimensional Navier±Stokes equations for the incom-
pressible ¯uid with the energy equation in the form:
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where the source term of the momentum equation can
include the gravitational e�ects. The continuity
equation can be written as:

@u

@x
� @u
@y
� 0 �1b�

Notice that the momentum equations are identical

to the energy equation, except for the pressure term,
which can be included in the source term. In this man-
ner applying the weighted residuals formulation to the

weak form of the equation, the Galerkin discretization
considering a totally implicit form, the resulting linear
system can be present by:
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where the values of the matrices [M ], [C ], [K ] and {S }
are given by:
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Fig. 1. Layout of the problem.

fS g �
�
O
Ni � dO� ~S �4�

If the indicated operations are performed on the
matrices one can obtain a linear system of the form:

� �Af� � ffg � fBfg �5�

where � �Af� and f �Bfg are identi®ed with the respective
variables: u, v or T. In this solution the temperature

®eld is the ®rst to be solved, since it is necessary to

determine the values of the source terms in the
momentum equations. This system of equations will be

later used in the discretization of the continuity
equation.
In this work a better approximation of the pressure

®elds was adopted and the expression which appears in
the general equation can be approximated by�
O
W
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where z is an arbitrary direction. In this manner a new
matrix can be de®ned as:

�P 0z � �
�
O
Ni
@Nj

@z
� dO �6�

Hence, the general two dimensional expression for
the momentum equation can be written as:�
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Similarly, treating the continuity equation by using

the method of weighted residuals, it can be written in
the form

e �
�
O
W
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which in its weak form becomes:�
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where un is the velocity normal to the element face and
remembering that this term is only used at the domain

frontiers.
One can observe that the discretized equations estab-

lish a relation between the velocity ®eld and the press-

ure gradients. If we consider Eq. (5) and the load
matrices {Bx } and {By } in the form:

fBzg � ÿ1

r
�M �@p

@z
� s

p,z
i � ÿbi

@p

@z
� s

p,z
i

where the ®rst term represents the load portion

due to pressure while the second part represents
the contribution due to the transient and the source
terms.

In the matrix form, one can write the momentum
equations in the form:
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If we de®ne a set of new variables in the form:
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one can write Eq. (10a) in the form:
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Since the values of u and v can be expressed in

terms of the interpolation functions Nj, as:
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Note that the pressure term in the element can
be also expressed in terms of interpolation function,
as:
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which when substituted into Eq. (13a) one can obtain
the general expression for the continuity equation in
the form:�
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Considering that the vectors Pi and the Kp, j are con-
stants for a given element and consequently can be put

outside the integral sign, the problem is reduced to a
system of equations of the form:

� �Ap� � f pg � fBpg �14�

the terms � �Ap� and f �Bpg must be given by the relations

below
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When the pressure ®eld is determined one can
correct the velocity ®eld before calculating the new

coe�cients, this can be done as:
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Alternatively one can interpolate the pressure ®eld
and use the Galerkin approximation in the same way

as used in the case of the momentum equation to
obtain the following relations:
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Having de®ned the system of equations to be solved,
it is necessary to establish the boundary conditions of
the problem. In case of the momentum equation one

can use the no-slip condition or the condition of
known velocity. Both can be applied simply by chan-
ging the corresponding lines in the matrix to the value
of interest. The boundary conditions at exit are more

di�cult to establish because the velocity pro®le is not
known and the condition most used is �d~un=d~n� � 0,
because it does not need any further correction.

In the case of the pressure equation, the boundary
conditions are more di�cult. It was demonstrated that
to obtain the weak form of the continuity equations,

the term
�
S Wun � dS has to be evaluated in terms of

the predetermined velocity distribution. It must be
mentioned that this term represents the normal velocity

and hence need to be evaluated at the frontiers where
mass in¯ux or e�ux occurs.

Finally, the points of the frontier can not be calcu-
lated in the same way as the internal grid points. In
this case Kp of the frontier points is considered zero.

This consideration implies that the u
_

and v̂ values
according to Eqs. (11) and (12), are equal to the values
speci®ed for u and v at the frontier.

3. Results and discussion

As mentioned earlier, the method of solution is vali-
dated by comparing predictions from the present
method with the results due to Vahl Davis and Jones

[18] and Vahl Davis [19]. This was realized by compil-
ing the Vahl Davis method for the problem shown in
Fig. 1. He solved this problem of natural convection

using a formulation based upon a vorticity and stream
function method and obtained solutions for di�erent
size grids. From these results the author obtained his
solution (considered as standard) by extrapolating the

grids until achieving precise results. The proposed
problem is a closed cavity with the two vertical walls
maintained at di�erent temperatures, as shown in Fig.

1, while the top and bottom surfaces are thermally
insulated.
The numerical predictions were obtained by using a

grid of 21 � 21 points and the results were further in-
terpolated by a cubic spline. The grid size was chosen
in order to be able to compare with Vahl Davis' results

under the same conditions. Numerical trials were per-
formed to establish the grid size most suitable for the
present study. No further attempts were realized since
the 21 � 21 grid (the same used by Vahl Davis) gave

satisfactory results. Obviously for high values of Ray-
leigh number the errors encountered are appreciable
and hence it is necessary to perform some grid size

testing in order to establish a suitable grid size.
Table 1 shows the predicted values from the present

solution as compared with the bench mark solution

and the solution due to Vahl Davis [19] for di�erent
values of Rayleigh numbers and a ®xed grid of 21 �
21. The analysis of the results in Table 1 shows that
the predictions from the present method indicate smal-

ler errors as compared with Vahl Davis' results except
for the case of Rayleigh number 103, where Vahl
Davis' results are in good agreement with the bench

mark solution. This is principally due to the fact that
Vahl Davis' formulation is based upon the vorticity
and stream function. As the Rayleigh number is

increased the errors associated with the solution also
increase reaching values of about 23% (Vahl Davis) as
compared to 12% from the present model. These
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errors can be reduced without any di�culties by using

®ner grid size.

It is interesting to mention that the values of c were

obtained by the numerical integration of the velocity
using the trapezoidal method. Each c value is calcu-

lated as an average of the values for the point under
consideration, integrating u along the y-coordinate and

v along the x-coordinate. The value at the mean point

of the cavity was also obtained by integrating the
spline functions of the velocities. These results are

shown in Fig. 2 illustrating the ¯ow patterns and the

constant temperature lines.

The comparative results con®rm the validity of the

proposed solution and the present predictions are
found to compare well with the available established

data. Having established the validity of the model, a
study the in¯uence of the geometry of the cavity on

the stream function, velocity and temperature ®elds as

well as the Nusselt number. Fig. 3 shows the stream
function and the temperature pro®les for di�erent geo-

Table 1

Comparative values for the cavity solution

cavg cmax Umax Vmax Numax Numin Nuavg

Ra=1� 103

Bench mark solution 1.174 . . . 3.649 3.697 1.505 0.692 1.118

(Position) ( . . .) y=0.813 x=0.178 y=0.092 y=1

Vahl Davis solution 1.174 . . . 3.589 3.629 1.491 0.702 1.111

Error 0.00% . . . 1.64% 1.84% 0.93% 1.45% 0.63%

(Position) ( . . .) y=0.811 x=0.181 y=0.112 y=1

Obtained solution 1.159a . . . 3.645 3.695 1.496 0.696 1.115

Error 1.28% . . . 0.11% 0.05% 0.60% 0.58% 0.27%

(Position) ( . . .) y=0.814 x=0.178 y=0.084 y=1

Ra=1� 104

Bench mark solution 5.071 . . . 16.178 19.617 3.528 0.586 2.243

(Position) ( . . .) y=0.823 x=0.119 y=0.143 y=1

Vahl Davis solution 5.176 . . . 16.189 19.197 3.603 0.61 2.212

Error 2.07% . . . 0.07% 2.14% 2.13% 4.10% 1.38%

(Position) ( . . .) y=0.82 x=0.125 y=0.165 y=1

Obtained solution 5.01b . . . 16.158 19.827 3.529 0.592 2.256

Error 1.20% . . . 0.12% 1.07% 0.03% 1.02% 0.58%

(Position) ( . . .) y=0.823 x=0.119 y=0.15 y=1

Ra=1� 105

Bench mark solution 9.111 9.612 34.73 68.59 7.717 0.729 4.519

(Position) (0.285, 0.601) y=0.855 x=0.066 y=0.081 y=1

Vahl Davis solution 9.702 10.236 36.46 62.79 7.901 0.797 4.45+4

Error 6.49% 6.49% 4.98% 8.46% y=0.0238 9.33% 1.44%

(Position) (0.29, 0.60) y=0.854 x=0.075 0.133 y=1

Obtained solution 8.786c 9.241 33.421 70.44 7.812 0.744 4.651

Error 3.57% 3.86% 3.77% 2.70% 1.23% 2.06% 2.92%

(Position) (0.70, 0.40)d y=0.853 x=0.0672 y=0.103 y=1

Ra=1� 106

Bench mark solution 16.32 16.75 64.63 219.36 17.925 0.989 8.8

(Position) (0.149, 0.547) y=0.85 x=0.0379 y=0.0378 y=1

Vahl Davis solution 20.16 20.914 79.27 195.44 14.215 1.749 9.027

Error 23.53% 24.86% 22.65% 10.90% 20.70% 76.85% 2.58%

(Position) (0.149, 0.554) y=0.862 x=0.0447 y=0.124 y=1

Obtained solution 14.29e 14.967 57.22 220.48 15.601 0.971 8.934

Error 12.42% 10.64% 11.47% 0.51% 12.97% 1.82% 1.52%

(Position) (0.83, 0.45)f y=0.872 x=0.0454 y=0.09 y=1

a Calculated by integral of velocity function, c=1.173.
b Calculated by integral of velocity function, c=5.084.
c Calculated by integral of velocity function, c=9.107.
d In a symmetric position 0.30, 0.60 there a similar value, (c=9.225).
e Calculated by integral of velocity function, c=15.7.
f In a symmetric position 0.17, 0.55 there a similar value (c=14.656).
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Fig. 2. Numerical predictions of ¯ow patterns and constant temperature lines.
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Fig. 3. Stream function patterns and isotemperature curves for various L/H ratios.
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Fig. 4. Stream function patterns and isotemperature curves for various ratios of L/H.
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Fig. 5. Velocity pro®les for several L/H values.
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Fig. 6. Velocity pro®les for several L/H ratios.
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Fig. 7. Nusselt numbers for several L/H ratios.
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metries of the cavity and for Rayleigh number=105.

In the case of L=H � 0:1, the stream lines are almost

straight over the whole length of the cavity and the

temperature pro®les are nearly constant indicating that

the process of heat transfer across the cavity is basi-
cally dominated by conduction. The increase of the

cavity width or increasing the ratio L/H to 0.2 and

0.25, one can observe the rapid changes occurring in

the stream lines and the temperature pro®les indicating

an increase of the convection participation in the heat

transfer process. In Fig. 4, the ratio of L/H is of 0.5
and 0.75, one can observe the variation of the stream

lines patterns and the temperature pro®les indicating

that convection process is progressively dominating the

process of heat transfer. When L=H � 1 as in Fig. 2

the heat transfer process is basically controlled by con-

vection as indicated by the corresponding stream lines

and the temperature pro®les.

Figure 5 shows the variations in the velocity pro®les

U and V along the vertical and horizontal lines passing

by the geometrical center of the cavity for L=H � 0:1;
0.2 and 0.25. One can observe that when L=H � 0:1,
the variation of the velocity U along the vertical line

passing by the cavity center is more concentrated at

the top and bottom extremities of the cavity while

along the remaining part of the cavity length there is

no variation. As the ratio L/H increases to the values

of 0.2 and 0.25, the regions of variation of the velocity

U are extended away from the top and bottom ex-

tremities until eventually U varies along the whole

length of the cavity as nearly the case when L=H �
0:25: Figure 6 shows the cases of L=H � 0:50; 0.75 and

1.0 where the velocity pro®le U changes and is comple-
tely asymmetrical. These variations are expected based

upon the stream lines patterns for these cases. The

variation of the velocity V along a horizontal line

passing by the center of the cavity, for values of

L=H � 0:1; 0.2 and 0.25; are shown in Fig. 5 and
L=H � 0:5; 0.75 and 1.0 in Fig. 6. One can notice the

variations in the velocity pro®les caused by the vari-

ation of the ratio L/H.

The variation of the Nusselt number as function of
L/H is shown in Fig. 7. One can notice that in case of

low L/H, that is, L=H � 0:1 the variation of the Nus-

selt number is limited to the top and bottom extremi-

ties of the cavity. When the ratio L/H is increased the

Nusselt number greatly changes along the cavity length
indicating a maximum value at about 0.1 from the top.

Away from the extremity one can observe a nearly lin-

ear reduction of the value of Nusselt number along the

cavity length as is demonstrated in Fig. 7 for the cases

L=H � 0:75 and 1.0.

Figure 8 shows the variation of the value of the

maximum velocity Umax in terms of the ratio L/H. As

can be seen the value of Umax increases with the

increase of the ratio L/H. The eventual reduction in

Fig. 8. Variation of Umax with ratio L/H.
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Fig. 9. Variation of Vmax with ratio L/H.

Fig. 10. Variation of the cmed with the ratio L/H.
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Fig. 11. Variation of mean Nusselt number with the ratio L/H.

Fig. 12. Variation of the maximum value of Nusselt number with the ratio L/H.
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the case of L=H � 1:0 is basically due to the com-

mencement of vortices in the central part of the cavity

where the point of maximum velocity is moved away

from the central line. The variation of the maximum

velocity Vmax is shown in Fig. 9 and indicates similar

behavior to that of Umax.

Figure 10 shows the variation of the maximum value

of the stream function cmax in terms of the ratio L/H.

As can be seen, the maximum value of c, that is cmax

increases with the increase of the ratio L/H, until for

L=H � 1:0, the recirculation starts in the central region

in the form of two recirculating vorticities.

The variation of the mean Nusselt number in terms

of the ratio L/H is shown in Fig. 11. One can observe

that, for values of L/H below 0.25, the mean Nusselt

number is reduced when the ratio L/H is increased due

to the fact that heat conduction dominates the heat

transfer process in this range of L/H. For larger values

of L/H, that is, L=Hr0:5, the mean Nusselt number

seems to be una�ected by the variation of the ratio L/

H. In this range of L/H the heat transfer process is

strongly dominated by the free convection mechanisms

of heat transfer as pointed out when discussing the

stream function patterns and the associated tempera-

ture pro®les. In the region of 0:25RL=HR0:5, both

decaying weak conduction and increasingly dominant

free convection e�ects are simultaneously present lead-

ing to slight increase in the heat transfer rate until it

reaches a stable value at around L=H10:5, where only
free convection dominates the heat transfer process.
The variation of the maximum value of the Nusselt

number with the variation of the ratio L/H is pre-
sented in Fig. 12 where the maximum value is continu-
ously decreasing due to the increase of the ratio L/H
and the corresponding decrease of the temperature gra-

dient across the gap. As the gap width increases, that
is, the ratio L/H increases, the heat transfer by conduc-
tion is further reduced while the free convection e�ects

starts to be stronger resulting in recuperating the heat
transfer rate and increasing the local maximum value
of the Nusselt number. Further increase of the gap

ratio leads to stronger free convection e�ects dominat-
ing the heat transfer process and stabilizing both the
heat transfer rate and the corresponding Nusselt num-

ber. Fig. 13 shows how the location of occurrence of
the maximum value of Nusselt number moves as a
result of the variation of the ratio L/H and remains
nearly in a ®xed region at high values of L/H, where

free convection is well established and dominant.

4. Conclusions

The present study shows that the proposed model
and the method of solution predict results that com-
pare well with the bench mark solution and the Vahl

Fig. 13. Variation of the position of Numax in terms of the ratio L/H.

K.A.R. Ismail, V.L. Scalon / Int. J. Heat Mass Transfer 43 (2000) 1373±13891388



Davis' results. Also the method allows for routine sol-
utions for the cases of high Rayleigh number. Better

predictions are possible by using ®ne grids. Further,
the stream function patterns, the temperature and vel-
ocity pro®les as well as the Nusselt number were inves-

tigated in terms of the variation of the Rayleigh
number and the ratio L/H of the cavity.
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